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Paradigm shifts in the operation of power networks

Traditional top to bottom operation:
» generate/transmit/distribute power

» hierarchical control & operation

Smart & green power to the people:
> high renewable penetration

» distributed generation & deregulation

» demand response & load control
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Microgrids
Structure _@_’
» low-voltage distribution networks S

» grid-connected or islanded
» autonomously managed

Applications
» hospitals, military, campuses, large
vehicles, & isolated communities )

191

Benefits
» naturally distributed for renewables
» flexible, efficient, & reliable

Operational challenges o—.—I—.

» volatile dynamics & low inertia

T | @
(!

» plug'n’play & no central authority )
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Conventional control architecture from bulk power ntwks

3. Tertiary control (offline)

o Goal: optimize operation
o Strategy: centralized & forecast

2. Secondary control (slower)

e Goal: maintain operating point
e Strategy: centralized

1. Primary control (fast)

o Goal: stabilization & load sharing
e Strategy: decentralized

Microgrids: distributed, model-free,
online & without time-scale separation

= break vertical & horizontal hierarchy

3/19




A preview — plug-and-play control and optimization

flat hierarchy, distributed, no time-scale separations, & model-free . ..

source # 1 source # 2 source # n

Transceiver Transceiver . Transceiver
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Modeling: a microgrid is a circuit

@ synchronous (& acyclic) AC circuit &VQ? EWQ?

with harmonic waveforms E;el(?it«"t) K Gij +1By; J
) Iz
@ ZIP loads: constant impedance, -rrrrﬂ@ g
current, & power PF +iQF (today) VP iQ;
© coupling via Kirchhoff & Ohm injection = Y power flows )
> active power: P = Zj B,'jE,'Ej sin(0,- = OJ-) aF G,'_,'E,'Ej COS(9,‘ = 0_,')
> reactive power: Q; = —}_; BjEiEjcos(0; — 0;) + GjE;Ejsin(0; — 6;)
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Modeling: a microgrid is a circuit

@ synchronous (& acyclic) AC circuit
with harmonic waveforms E;ei(?it«"t)

@ ZIP loads: constant impedance,
current, & power P +iQF (today)

© coupling via Kirchhoff & Ohm

i Gij +1Bj J

) I Zf
2
- IS
P AiQ7

injection = Y power flows |

@ purely inductive lines G/B =~ 0 (can be relaxed to G/B = const.)

O decoupling: P; ~ P;i(0) & Q; ~ Qi(E)

» trigonometric active power flow: P;(6)

(near operating point)

Ej B,'j Sin(a,' — 0,-)

> polynomial reactive power flow:  Q;(E) = —>_: BjEE; (not today)
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Modeling: sources interfaced with inverters

Power inverters are . .. DC PWM LC
—t— —~

— —~ —

@ interfaces between

¢ the AC microgrid and
¢ DC & variable AC sources

e controllable (voltage) sources
[Zhong & Hornik, '12]

Eei(9+wt)
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primary control

Decentralized primary control of active power

power consumed

Inverters are controlled
to emulate the physics of
synchronous generators.

[Chandorkar et. al. '93]

Intuition: Recall...

Pi(0) = ijl Bjjsin(0;~0)) pw

. * PI.I.IUar)
P/6 droop control: « %&\%z@
(wi—w*) o< (P — Pi(#)) P
. -~ F
D = P — Py(6) — >

power supplied
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Putting the pieces together...

differential-algebraic closed loop

network physics

load power balance: P = Z Bij;sin(6; — 0;)
j

—>
source injections:  P;(0) = E B;jsin(0; — 0;)
J

droop control

[0 =4 (Pr - Pi(e))}<

E

loads: 0= P;— ) Bjsin(6; — 6;)
J

sources: D;f; = Pf — Z Bijsin(6; — 0))
J

8/19




Closed-loop stability under droop control

Theorem: stability of droop control

d unique & exp. stable frequency sync <= active power flow is feasible

Main proof ideas and some further results:

oL - P+ P
e synchronization frequency: Weyne = w* + Limverters P+ 2ioads P
Zinverters Di
(o< power balance)
S P for loads
e steady-state power injections: Pi = " « .
* — Di(wsync —w™) for inverters

(depend on D; & PY)

e unique steady-state branch flows: {;; = By;sin(0] — 0;) = | B;j > ¢
(Pi = &)
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tertiary control

Objective |: decentralized proportional load sharing

1) Inverters have injection constraints: P;(6) € [0, P]

2) Load must be serviceable: 0 < ’Zbads Pr1 < Y Sinverters P

3) Fairness: load should be shared proportionally:  P;(6)/P; = P;(0)/P;

Py Py
Py Py
— <«
source # 1 source # 2
= load
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Objective |: decentralized proportional load sharing

1) Inverters have injection constraints: P;(6) € [0, P{]
2) Load must be serviceable: 0 < ‘Zlmds Pf’ <Y iwertors P
3) Fairness: load should be shared proportionally:  P;(6)/P; = P;(6)/P;

Theorem: fair proportional load sharing

Let the droop coefficients be selected proportionally:

D,/P; = D;/P; & P!/P;= P} /P

The the following statements hold:
(i) Proportional load sharing: P;(6)/P; = P;(0)/P;

(ii) Constraints met: OS‘ZloadS P <Y inverters Pi € Pi(8) € [0, Pi]
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Objective I: fair proportional load sharing

proportional load sharing is not always the right objective

)

source # 3

source # 1 l source # 2

— load 11/19

Objective Il: optimal economic dispatch

minimize the total accumulated generation

minimize gen | yeR

Flu)=>_ ajuf
inverters

subject to
inverter power balance: P + uj = Pi(0)
load power balance: P = P;(6)
branch flow constraints: 10; — 6;| < vy <m/2
inverter injection constraints: P;i(0) € [0,5;]

Problem is generally non-convex and feasible only if the load is serviceable
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Objective Il: optimal economic dispatch

minimize the total accumulated generation

minimize getn | yeR

Flu)=>_ ajuf
inverters

subject to
inverter power balance: P + uj = Pi(0)
load power balance: P = P;(0)
branch flow constraints: 10i —6;| < vy <m/2
inverter injection constraints: P;i(0) € [0,5;]

Problem is generally non-convex and feasible only if the load is serviceable

In conventional power system operation, the economic dispatch is
@ solved offline, in a centralized way, & with a model & load forecast

In an autonomously managed microgrid, the economic dispatch should be
@ solved online, in a decentralized way, & without knowing a model
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Objective Il: decentralized dispatch optimization

Insight: droop-controlled microgrid = decentralized primal algorithm J

Theorem: optimal droop

The following statements are equivalent:

(i) the economic dispatch with cost coefficients «; is strictly feasible
with global minimizer (6%, u*).

(i) 3 droop coefficients D; such that the microgrid possesses a unique &
locally exp. stable sync'd solution § satisfying P;(9) € [0, P;).

If (i) & (ii) are true, then 6; ~ 6%, uf=—Dj(wsync—w*), & | Diaj = Djaj|.

@ similar results hold for the general constrained case

@ similar results in transmission ntwks with DC flow [E. Mallada & S. Low, '13]
& [N. Li, L. Chen, C. Zhao, & S. Low '13] & [X. Zhang & A. Papachristodoulou, '13] &

[M. Andreasson, D. V. Dimarogonas, K. H. Johansson, & H. Sandberg, '13] & . .. 1310




secondary control

Secondary frequency control in power networks

Problem: steady-state frequency deviation (wsyne # w™)

Solution: integral control

Interconnected Systems

[Chandorkar et. al.’93, Lopes etal.'05, Bevrani '09, ...]

Isolated Systems

e Centralized automatic
generation control (AGC)

remainder
control

compatible with econ. dispatch
[N. Li, L. Chen, C. Zhao, & S. Low '13]

e Decentralized Pl control

is globally stabilizing
[C. Zhao, E. Mallada, & FD, '14]
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Secondary frequency control in power networks
Problem: steady-state frequency deviation (wsyne # w™)

Solution: integral control

Interconnected Systems Isolated Systems

[Chandorkar et.al.'93, Lopes etal.’05, Bevrani '09, .

2

e C ~tralized automatic

e Der ~tralized Pl control

"~n control (AGCQ)
Ce,

compatible with econ. dispatch is globally stabilizing

Microgrids require distributed (!) secondary control strategies. J

14/19

Distributed Averaging P1 (DAPI) control

Dif; = P} — Pi(0) —

k,'Q,' = D,-G,-— Z a,-j . (S;IDJ)
! J

Jj Cinverters

e no tuning & no time-scale
separation: k;, D; >0

e distributed & modular:
connected comm. C inverters

e recovers primary op. cond.
(load sharing & opt. dispatch)

= plug'n’play implementation

Microgrid
Qo e o)
Primary Primary Primary
Tertiary Tertiary Tertiary
il o | o, i o
| TN
Secondaryi??ﬁ‘Secondary .. |Secondary
2 2 I~ .

Theorem: stability of DAPI

primary droop controller works
<
secondary DAPI controller works

V.
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plug-and-play experiments

Plug'n’play architecture

flat hierarchy, distributed, no time-scale separations, & model-free

source # 1 source # 2 source # n
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Plug'n’play architecture

recap of detailed signal flow (active power only)

Microgrid:
physics
& loadflow

Primary control:
mimic oscillators

Tertiary control:
marginal costs
o 1 /control gains

Secondary control:

diffusive averaging
of injection ratios
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Plug'n’play architecture

similar results in the reactive case

Microgrid:
physics
& loadflow

Primary control:
mimic oscillators
& polyn. symmetry

Tertiary control:
marginal costs
o 1 /control gains

Secondary control:
diffusive averaging
of injection ratios
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Plug'n’play architecture

experiments also work well in the coupled & lossy case

P.; = Z]‘ B”EZE] sin(9i — (9]) “r G,JEZE] COS(ei — 0])
Qi = — Z ) BijEichos(Hi — 9]) -+ G”EZEJ sin(&i — 91)
J
Pi( 5 0; Qi(4 ) E;
Df;=P; — P, — Q;
7B =—CiEy(E; — E}) - Qi — &
Di X 1/(11
i/ Di 570 Q/D;
klnl=D,01— Z aij . (J— ]) "
Qk/Dk j Cinverters Dl Dj Q_’I/Dj
] = Z agj - % _ % —ee [T .
Qk/Qk Jj Cinverters J Q]/Q7

Microgrid:
physics
& loadflow

Primary control:
mimic oscillators
& polyn. symmetry

Tertiary control:
marginal costs
x 1 /control gains

Secondary control:

diffusive averaging
of injection ratios
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Experimental validation of control & opt. algorithms
in collaboration with Q. Shafiee & J.M. Guerrero @ Aalborg University

Low Bandwidth
Distributed Communication Network

IS

i ey
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Experimental validation of control & opt. algorithms

frequency/voltage regulation & active/reactive load sharing

Voltage Magnitudes

Reactive Power Injections
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conclusions




Conclusions

Summary
e primary P/6 droop control

e fair proportional load sharing &
economic dispatch optimization

e distributed secondary control
strategies based on averaging

e experimental validation

Further results
e reactive power control
e virtual oscillator control

Open conjecture

e solve these problems without comm
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