Sketchy Decisions: Convex Low-Rank Matrix Optimization with Optimal Storage
Abstract:
In this talk, we consider a fundamental class of convex matrix optimization problems with low-rank solutions. We show it is possible to solve these problem using far less memory than the natural size of the decision variable when the problem data has a concise representation. Our proposed method, SketchyCGM, is the first algorithm to offer provable convergence to an optimal point with an optimal memory footprint. SketchyCGM modifies a standard convex optimization method — the conditional gradient method — to work on a sketched version of the decision variable, and can recover the solution from this sketch. In contrast to recent work on non-convex methods for this problem class, SketchyCGM is a convex method; and our convergence guarantees do not rely on statistical assumptions. Based on joint work with Alp Yurtsever, Volkan Cevher, and Joel Tropp.
Biography:Madeleine Udell is Assistant Professor of Operations Research and Information Engineering and Richard and Sybil Smith Sesquicentennial Fellow at Cornell University. She studies optimization and machine learning for large scale data analysis and control, with applications in marketing, demographic modeling, medical informatics, and engineering system design. Her recent work on generalized low rank models (GLRMs) extends principal components analysis (PCA) to embed tabular data sets with heterogeneous (numerical, Boolean, categorical, and ordinal) types into a low dimensional space, providing a coherent framework for compressing, denoising, and imputing missing entries. She has developed of a number of open source libraries for modeling and solving optimization problems, including Convex.jl, one of the top ten tools in the new Julia language for technical computing, and is a member of the JuliaOpt organization, which curates high quality optimization software. Madeleine completed her PhD at Stanford University in Computational & Mathematical Engineering in 2015 under the supervision of Stephen Boyd, and a one year postdoctoral fellowship at Caltech in the Center for the Mathematics of Information hosted by Professor Joel Tropp. At Stanford, she was awarded a NSF Graduate Fellowship, a Gabilan Graduate Fellowship, and a Gerald J. Lieberman Fellowship, and was selected as the doctoral student member of Stanford's School of Engineering Future Committee to develop a road-map for the future of engineering at Stanford over the next 10–20 years. She received a B.S. degree in Mathematics and Physics, summa cum laude, with honors in mathematics and in physics, from Yale University.